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Abstract 

Clusters of SMP (Symmetric Multi-Processors) nodes provide support for a wide 
range of parallel programming paradigms. The shared address space within each node 
is suitable for OpenMP parallelization. Message passing can be employed within and 
across the nodes of a cluster. Multiple levels of parallelism can be achieved by 
combining message passing and OpenMP parallelization. Which programming 
paradigm is the best will depend on the nature of the given problem, the hardware 
components of the cluster, the network, and the available software. In this study we 
compare the performance of different implementations of the same Computational 
Fluid Dynamics (CFD) benchmark application, using the same numerical algorithm 
but employing different programming paradigms.  

1. Introduction 

With the advent of parallel hardware and software technologies users are faced with the 
challenge of choosing a programming paradigm best suited for the underlying computer 
architecture. With the current trend in parallel computer architectures shifting towards 
clusters of shared memory symmetric multi-processors (SMPs) parallel programming 
techniques have evolved to support parallelism beyond a single level.  

Parallel programming within one SMP node can take advantage of the globally shared 
address space. Compilers for shared memory architectures usually support multi-threaded 
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execution of a program. Loop level parallelism can be exploited by using compiler directives 
such as those defined in the OpenMP standard [6]. OpenMP provides a fork-and-join 
execution model in which a program begins execution as a single process or thread. This 
thread executes sequentially until a parallelization directive for a parallel region is found. At 
this time, the thread creates a team of threads and becomes the master thread of the new team. 
All threads execute the statements until the end of the parallel region. Work-sharing 
directives are provided to divide the execution of the enclosed code region among the 
threads. All threads need to synchronize at the end of parallel constructs. The advantage of 
OpenMP is that an existing code can be easily parallelized by placing OpenMP directives 
around time consuming loops which do not contain data dependences, leaving the source 
code unchanged. The disadvantage is that it is not easy for the user to optimize workflow and 
memory access. 

On an SMP cluster the message passing programming paradigm can be employed within 
and across several nodes. The Message Passing Interface (MPI) [5] is a widely accepted 
standard for writing message passing programs. MPI provides the user with a programming 
model where processes communicate with other processes by calling library routines to send 
and receive messages. The advantage of the MPI programming model is, the user’s complete 
control over data distribution and process synchronization, permitting the optimization of 
data locality and workflow. The disadvantage is that existing sequential applications require a 
fair amount of restructuring for parallelization based on MPI. The MPI and OpenMP 
programming models can be combined into a hybrid paradigm to exploit parallelism beyond 
a single level. The main thrust of the hybrid parallel paradigm is to combine process level 
coarse-grain parallelism, such as domain decomposition and fine-grain parallelism on a loop 
level, which is achieved by compiler directives. The hybrid approach is suitable for clusters 
of SMP nodes where MPI is needed for parallelism across nodes and OpenMP can be used to 
exploit loop level parallelism within a node. 

In this study we will compare different programming paradigms for the parallelization of 
a selected benchmark application on a cluster of SMP nodes. We compare the timings of 
different implementations of the same CFD benchmark application employing the same 
numerical algorithm on a cluster of Sun Fire SMP nodes. The rest of the paper is structured as 
follows: We describe our compute platform in section 2, the different implementations of our 
benchmark code are described in section 3, and the performance results are presented in 
section 4. We then discuss related work in section 5 and conclude our study in section 6.  

2. Description of the Compute Platform 

For our study we used the Sun Fire cluster at the Computer Center of the University of 
Aachen, Germany. In this section we provide a brief system description. For more details see 
[11]. The system consists of : 

• 16 Sun Fire 6800 nodes with 24 UltraSPARC-III Cu processors and 24GB of shared 
memory per node. 
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• 4 Sun Fire 15K nodes with 72 UltraSPARC-III Cu processors and 144GB of shared 
memory in each node. 

The UltraSPARC-III Cu processors have a 900MHz clock rate. They are superscalar 64-
bit processors with two levels of cache. The L2 off-chip cache has 8MB for data and 
instructions. Each CPU board contains four processors and their external L2 caches together 
with their local memory. The Sun Fire 6800 nodes offer a flat memory system, in other words  
all memory cells approximately have the same distance to each processor, with a latency of 
about 235ns (local access) and 274ns (remote access). The Sun Fire 15K nodes provide a cc-
NUMA memory system where data locality is important. The latency for memory access 
within a board is about 248ns and remote access has a latency of approximately 500ns, as 
measured by pointer chasing. Switched Gigabit Ethernet (GE) is used to interconnect the 
SMP nodes. Furthermore, two tightly coupled clusters of eight Sun Fire 6800 systems are 
formed by interconnecting them with a proprietary high-speed Sun Fire Link (SFL) network. 
The Sun Fire Link is a new low-latency system area network that provides the high 
bandwidth needed to combine large SMP servers into a capability cluster. The network 
hardware exports a remote shared memory (RSM) model that supports low latency kernel 
bypass messaging. The Sun MPI library uses the RSM interface to implement a highly 
efficient memory-to-memory messaging protocol in which the library directly manages 
buffers and data structures in remote memory. This allows flexible allocation of buffer space 
to active connections, while avoiding resource contention that could otherwise increase 
latencies. The Sun Fire Link network achieves MPI inter-node bandwidths of almost three  
Gigabytes per second and MPI ping-pong latencies as low as 3.7 microseconds [10]. This 
compares to a latency of at least 100 microseconds and a maximum bandwidth of about 100 
Megabytes per second when using GE. 

For our study we used four Sun Fire 6800 nodes and one Sun Fire 15K node.  

3. Benchmark Implementations 

We used the Block Tridiagonal (BT) benchmark from the 
NAS Parallel Benchmarks (NPB) [1] for our comparative 
study. The BT benchmark solves three systems of equations 
resulting from an approximate factorization that decouples the 
x, y, and z dimensions of the 3-D Navier-Stokes equations. 

These systems are block tridiagonal consisting of 5×5 blocks. 
Each dimension is swept sequentially as depicted in Figure 1. 
We evaluated four different parallelization approaches: One 
based on using MPI, one based on OpenMP and two hybrid 
(MPI+OpenMP) strategies. 

The MPI implementation of BT employs a multi-partition 
[2] in 3-D to achieve load balance and coarse-grained 
communication. In this scheme, processors are mapped onto 
sub-blocks of points of the grid such that the sub-blocks are 
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Figure 1: Structure of the BT 
benchmark. 
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evenly distributed along any direction of 
solution. The blocks are distributed such that 
for each sweep direction the processes can start 
working in parallel. Throughout the sweep in 
one direction, each processor starts working on 
its sub-block and sends partial solutions to the 
next processor before going into the next stage. 
An example for one sweep direction of a 2-D 
case is illustrated in Figure 2. The 2-D domain 
is divided into squares. The number within 
each square indicates the process number of the owner. Communications occur at the sync 
points as indicated by gray lines in Figure 2. We used the code as distributed in the NPB2.3, 
but employed several optimizations to reduce the memory requirements. The optimizations 
we performed are similar to those described in [3]. In the following we will refer to this 
implementation as BT MPI. 

The OpenMP implementation is based on the version described in [3]. OpenMP 
directives are placed around the time consuming outermost loops. No directive nesting is 
employed. We will refer to this implementation as BT OMP. 

We use two hybrid implementations based on different data distribution strategies. The 
first hybrid MPI/OpenMP implementation is based on the versions described in [3] but uses a 
mixed multi-dimensional parallelization strategy. The parallelization in one of the dimensions 
is achieved by using message-passing with a one-dimensional domain decomposition in the 
z-dimension. The second level of  parallelism is achieved by inserting OpenMP directives on 
the loops in the y-dimension. Code segments for both routines are given in Figure 3. Since 

the data is distributed in the z-dimension, the call to z_solve requires communication 

Figure 3: Code segments demonstrating the tight interaction between MPI and OpenMP is routines 

y_solve (left) and z_solve (right) of BT Hybrid V1. 
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  subroutine y_solve 
 
!$omp parallel  
 do k=k_low,k_high 
synchronize neighbor threads  
!$omp do 
   do j=1,ny 
    do i=1,nx 
      rhs(i,j,k)=rhs(i,j-1,k) 
           + ... 
    enddo 
   enddo 
 synchronize neighbor threads 
 enddo 

subroutine z_solve 
 
!$omp parallel do 
  do j=1,ny 
    call receive 
    do k=k_low,k_high 
      do i=1,nx 
      rhs(i,j,k)=rhs(i,j,k-1) 
                   + ... 
      enddo 
    enddo 
    call send 
   enddo 

 

Figure 2: The multi-partition scheme in  2-D. 
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Figure 4: Code segment of routine z_solve

in BT Hybrid V2. 

 do ib = 1, nblock 
 call receive 
!$omp parallel do 
  do j=j_low,j_high 
    do i=i_low,i_high 
      do k=k_low,k_high 
      lhs(i,j,k)=fac(i,j,k-1) 
          + fac (i,j,k+1)... 
      enddo 
    enddo 
   enddo 
  call send 
 end do 

 

within a parallel region. The routine y_solve contains data dependences on the y-
dimension, but can be parallelized by employing pipelined thread execution. We refer to this 
implementation as BT Hybrid V1. 

The second hybrid implementation is 
based on the code as used in BT MPI, but 
with OpenMP directives inserted on the 
outermost loops in the time consuming 
routines. A code segment is shown in 
Figure 4. All communication occurs 
outside of the parallel regions and there is 
no pipelined thread execution. In each of 
the solver routines, there is one dimension 
where OpenMP directives are placed on a 
distributed dimension. Note that BT Hybrid 
V2, without enabling the OpenMP 
directives, is identical to the pure MPI 
implementation.  
 

4. Timing Results 

We tested our implementations of the benchmark on three different configurations, all of 
them running Solaris 9, update 2: 

• Four Sun Fire 6800 (SF-6800) nodes connected by a Sun Fire Link (SFL). 

• Four Sun Fire 6800 (SF-6800) nodes connected by a Gigabit Ethernet (GE). 

• One Sun Fire 15K (SF-15K) node. 
We used the Sun ONE Studio 8 Fortran 95 compiler. In order to obtain clean and 

reproducible performance measurements, we had exclusive access to the Sun Fire systems. 
For the hybrid codes we explicitly bound all threads to separate processors with the 

processor_bind system call. We report the timings for 20 iterations of a class A 
benchmark corresponding to a problem size of 64x64x64 grid points.  

 

4.1. Timing Comparison of the Benchmark  Implementations 

In this section we compare the scalability of each of the implementations. For the hybrid 
implementations we report the best timings achieved when varying the number of MPI 
processes and threads. The results are shown in Figures 5 and 6. The total number of 
available CPUs on the SF-6800 cluster is 96 and on the SF-15K node 72 CPUs are available. 
Some of our implementations require the number of MPI processes to be square. Therefore, 
we report timings for up to 81 CPUs on the SF-6800 cluster and 64 CPUs on the SF-15K 
node.  
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Figure 6: Timings for 20 iterations of BT Class A on 
 the Sun Fire 15K node with 72 CPUs. 

 

 

 

The pure MPI implementation shows the 
best scalability for the configurations with a 
fast interconnect such as the Sun Fire Link 
(SFL) and shared memory on the SF-15K. 
The good performance is due to the carefully 
hand-optimized work distribution and 
synchronization resulting from the multi-
partition scheme. While the OpenMP 
implementation also shows good scalability, 
it has the following disadvantages when 
compared to the MPI implementation: 

• OpenMP parallelization requires a shared 
address space which limits scalability to 
the number of CPUs within one SMP 
node, which is 24 for the SF-6800 and 72 for SF-15K. 

• The OpenMP directives are placed only on the outer loops within a loop nest (in other 
words, no nested parallelism is employed). This restricts the scalability to number of 
inner grid points in one dimension, which is 62 for the Class A problem size. 

When using the Gigabit Ethernet and a large number of CPUs )and consequently a larger 
number of SMP nodes), the scalability of the MPI implementation decreases. In this case, the 

BT Class A SF-6800 (Sun Fire Link)

1

10

100

1 4 16 36 64 81

Number of CPUs

T
im

e 
in

 s
ec

o
n

d
s

BT OMP
BT MPI
BT Hybrid V1 
BT Hybrid V2

 

Figure 5: Timings for 20 iterations of BT Class A on a four-node SF 6800 cluster. For a small number of CPUs, the 
hybrid codes performed best employing only one thread per MPI process. For 64 CPUs and the slower GE network,  
the best timing for BT Hybrid V1 was achieved using 16 MPI processes and 4 MPI processes for BT Hybrid V2.  
For 81 CPUs, the best timings for both hybrid codes were achieved using 16 MPI processes with 5 threads each, 
employing only 80 CPUs. 
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hybrid implementations are advantageous. We will discuss the reason for this in the following 
section. 

4.2. Comparing Different Processes and Thread Combinations for Hybrid Codes 

When using the fast Sun Fire Link network on the SF-6800 cluster or the shared memory 
available on the SF-15K, the hybrid codes performed best when using as many MPI 
processes as possible. Only in cases where the program structure limits the number of MPI 
processes that can be employed was is advantageous to use multiple threads per process to 
exploit extra parallelism. The situation is 
different for a slower GE network. Here it 
was in some cases beneficial to use a 
smaller number of MPI processes and 
increase the number of threads per 
process. To understand this behavior we 
will discuss the case of using 64 CPUs 
across four SF-6800 nodes. The effects of 
varying the number of MPI processes and 
OpenMP threads are shown in Figure 7. 
The combination of MPI processes and 
threads is indicated as NPxNT, where NP 
is the number of processes and NT is the 
number of threads per process. 

When using the Sun Fire Link 
interconnect, ne  thread per MPI process 
yielded the best performance. For the GE 
interconnect it was advantageous to use a 
smaller number of MPI processes with multiple threads. Note that Hybrid V1 can not be run 
with 64 MPI processes, since there are only 62 grid points in each of the spatial dimensions 
and the implementation requires at least 2 grid points per MPI process.  

As mentioned earlier, BT Hybrid V1 employs a 1-D data distribution in the z-dimension. 

Communication occurs in routine z_solve within a parallel region. Each thread exchanges 
partially updated data with two neighbors. The amount of data sent by each process remains 
the same regardless of the total number of processes used. Each process communicates data 
with two neighboring processes.  

In BT Hybrid V2 the number of messages sent in each iteration by each process depends 
on the total number of processes. Increasing the number of processes increases the number of 
messages per process and decreases the length of the message. The number of threads per 
process does not influence the communication patterns, since all communication occurs 
outside of the parallel regions. Due to the 3-D data distribution, each process sends messages 
to six neighboring processes. For the problem size of class A, BT Hybrid V2 saturates the 
bandwidth provided by the Gigabit Ethernet (GE) when more than four MPI processes are 
used. If 64 MPI processes are employed, BT Hybrid V2 becomes completely communication 

BT Class A on 64 CPUs on  4 SF-6800 nodes 
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Figure 7: Effect of varying numbers of MPI 
processes and threads on the execution time for 20  
iterations. Hybrid V2 can not be run on 64 MPI 
processes. 
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bound for the case of the GE network. Two parallel communications are sufficient to saturate 
the bandwidth of the connection, whereas it takes at least eight simultaneous transfers to 
saturate the bandwidth of the Sun Fire Link, as has been measured with the Pallas MPI 
benchmarks [4]. 

In BT Hybrid V1 the interaction between MPI and OpenMP is more tightly coupled than 
in BT Hybrid V2. MPI calls are made from within parallel regions and threads from different 
MPI processes have to synchronize with each other. This greatly increases overhead 
introduced by OpenMP such as barrier synchronization. We have also noticed lock 
contention when multiple threads make calls to the MPI library, indicating that these calls get 
serialized in order to make them thread-safe. This leads to the conclusion that increasing the 
number of threads in BT Hybrid V1 not only increases the OpenMP overhead, but also 
increases the time spent in MPI calls. These problems do not occur in BT Hybrid V2. While 
the use of OpenMP directives introduces the usual overhead involved with the forking and 
joining of threads and thread barrier synchronization at the end of parallel regions, there is no 
negative effect on the MPI parallelization. In Table 1 we have summarized the MPI and 
OpenMP characteristics for the runs from Figure 7. 

 

 Total #bytes #sends avg. msg. length  OpenMP MPI 

BT V1 4x16 157,728,000 14,880 10,600 bytes 23% 25% 

BT V1 16x4 630,912,000 59,520 10,600 bytes 17% 4% 

BT V2 4x16 111,705,600 960 116,360 bytes 15% 7% 

BT V2 16x4 352,435,200 7,680 45,890 bytes 5% 19% 

BT V2 64x1 814,080,000 61,440 13,253 bytes 0% 125% 

We conclude that Hybrid V1 can employ more MPI processes than Hybrid V2 before 
saturating the GE network. The overhead introduced by increasing the number of threads per 
process is greater for Hybrid V1 than for V2, which is due to the tight interaction between 
MPI and OpenMP. 

4.3. Usage of  Multiple SMP Nodes 

In Figure 8 we show timings for BT Hybrid V2 for 16 CPUs when running on 1, 2, and 4 
SMP nodes. We compare runs using only one thread per MPI process (16x1) and runs 
employing four processes with four threads each. The MPI processes are distributed evenly 
between the SMP nodes. For the relatively small number of CPUs it was always best to use 
only one thread per MPI process for the Fire Link as well as the GE interconnect. We observe 

Table 1: Summary of MPI and OpenMP characteristics for the hybrid codes. The last two 
columns indicate the percentage of time spent in MPI calls and OpenMP barrier 
synchronization versus the user CPU time. 
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BT Hybrid V2 on 16 CPUs on SF-6800 
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Figure 8: Timings for 20 iterations of BT Hybrid 
V2 on 16 SF-6800 CPUs.  

that using the Sun Fire Link (SFL) is as fast as 
using the shared memory within one of the 
SMP nodes. 

5. Related Work 

There are many published reports on the 
comparison of different programming 
paradigms. We can only name a few of them. A 
comparison of message passing versus shared 
memory access is given in [8] and [9]. The 
studies focus on shared memory architectures. 
Some aspects of hybrid programming on SMP 
clusters are discussed in [7]. An evaluation of 
MPI using the Sun Fire Link network is given 
in [10]. 

 
 
 

6. Conclusions and Future Work 

We have run several implementations of the same CFD benchmark code employing 
different parallelization paradigms on a cluster of SMP nodes. When using the high-speed 
interconnect or shared memory, the pure MPI paradigm turned out to be the most efficient. A 
slow network lead to a decrease in the performance of the pure MPI implementation. The 
hybrid implementations showed different sensitivity to network speed, depending on the 
parallelization strategy employed. The benefit of the hybrid implementations was visible on a 
slow network. 

The hybrid parallelization approach is suitable for large applications with an inherent 
multilevel structure, such as multi-zone codes. For codes like the BT benchmark, where 
parallelization occurs only on one or more of the spatial dimensions, the use of either process 
level parallelization or OpenMP is, in general, more appropriate. We plan to conduct a study 
using multi-zone versions of the NAS Parallel Benchmarks [12], which are more suitable for 
the exploitation of multilevel parallelism. 
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